ttnn.repeat_bw

ttnn.repeat_bw = Operation(python_fully_qualified_name='ttnn.repeat_bw', function=<ttnn._ttnn.operations.unary_backward.repeat_bw_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)

Performs backward operations for repeat on input_tensor, with given grad_tensor using given shape.

Parameters:
  • grad_tensor (ttnn.Tensor) – the input gradient tensor.

  • input_tensor (ttnn.Tensor) – the input tensor.

  • shape (List[int]) – Shape of tensor.

Keyword Arguments:

memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.

Returns:

List of ttnn.Tensor – the output tensor.

Note

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16

TILE

4

Example

>>> grad_tensor = ttnn.from_torch(torch.rand([1, 1, 32, 32], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> input = ttnn.from_torch(torch.rand([2, 1, 32, 32], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device)
>>> output = ttnn.repeat_bw(grad_tensor, input, shape)