ttnn.erf
- ttnn.erf(input_tensor: ttnn.Tensor, *, fast_and_approximate_mode: bool | None = False, memory_config: ttnn.MemoryConfig | None = None, output_tensor: ttnn.Tensor | None = None, queue_id: int | None = 0) ttnn.Tensor
-
Applies erf to
input_tensor
element-wise.\[\mathrm{output\_tensor}_i = erf(\mathrm{input\_tensor}_i)\]- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
fast_and_approximate_mode (bool, optional) – Use the fast and approximate mode. Defaults to False.
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
Example
>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.erf(tensor, fast_and_approximate_mode=True)